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Abstract. We introduce QuisSearch, a programmable people-search layer
powered by the People Search Network Algorithm (PSNA). Every résumé,
post, or profile fragment is registered as an atomic node on a univer-
sal graph; edges encode legally and economically meaningful connec-
tion points (e.g., co-authorship, shared mentor, complementary skills).
PSNA extends relevance-aware graph neural networks (RA-GNN) with
attention weighting, residual memory, and real-time temporal updates,
so node embeddings evolve whenever fresh data or user feedback ar-
rives, meaning each query runs against a living representation of the
professional world. As participants add profiles and confirm suggested
matches, graph density and labeled edges grow, reducing sparsity and
exposing subtler relational patterns; empirical tests show top-k match
precision climbing proportionally with edge count. Thus, every interac-
tion sharpens future recommendations, creating a compounding flywheel
that makes search faster, more accurate, and more context-aware over
time. QuisSearch aims to be the open, permissionless index of global
professional affinity and means of connection, turning latent connections
into actionable opportunities.

1 Introduction

With the rise of the Graph Neural Network (GNN) models, we now have power-
ful tools to represent and analyze the complex relationships that define human
connections, organizational hierarchies, and professional networks. These mod-
els excel at capturing relational patterns within graph-structured data, making
them particularly well-suited for understanding the nuanced web of intersections
between individuals.[33][31][25]

The core challenge, therefore, is the development of an intelligent solution
capable of bridging this gap. An effective AI service is needed that can deeply
understand individual user profiles, going beyond basic professional information
to identify nuanced personal interests and uncover the underlying ”chemistry”
behind how people connect. Furthermore, this service must possess the capa-
bility to accurately retrieve relevant individuals from existing databases, which
often contain vast amounts of unstructured data.

This pursuit of identifying the ’underlying chemistry’ for connection is strongly
supported by social psychological principles like the similarity-attraction effect
and homophily, which posit that common ground—shared interests, experiences,



or affiliations—acts as a powerful catalyst for interpersonal bonding and rapport.
Extensive research confirms that individuals are generally more inclined to con-
nect with and respond positively to those they perceive as similar[6]. While di-
rect empirical validation specifically quantifying the impact of highlighting such
commonalities on objective success metrics in cold outreach for professional op-
portunities (such as job or internship application response rates) is an evolving
area in academic literature, the foundational theories and related studies on net-
working and trust formation underscore the high potential of shared attributes
in fostering initial engagement.[29][10][11]

Therefore, an AI service that can effectively unearth these nuanced points
of convergence from diverse data sources, as proposed, becomes invaluable in
proactively identifying and facilitating potentially meaningful connections that
might otherwise be missed, particularly when considering the psychological dy-
namics and obstacles involved in initiating conversations with strangers[2]

QuisSearch uses AI and network analysis to connect students and alumni
based on shared interests and skills extracted from resumes. PSNA(personal
search network algorithm)are trained on user data, analyzing professional his-
tory, skills, and interests to identify individuals with significant overlap. This
sophisticated matching process goes beyond keywords, fostering more meaning-
ful connections.

2 Architecture Overview

Our proprietary PSNA represents a transformative leap in graph-based machine
learning, directly addressing three critical limitations of traditional GNNs: over-
smoothing, heterophily, and static graph assumptions. Unlike conventional mod-
els that degrade in performance as networks deepen or fail to handle dissimilar
connected nodes, PSNA explicitly models contextual connection points (e.g.,
”collaboration,” ”skill overlap”) and dynamically prioritizes relationships via
attention-driven message weighting. This enables the model to distinguish be-
tween relationship types (e.g., mentorship vs. professional rivalry) and retain
node distinctiveness even in deep networks. Additionally, PSNA integrates tem-
poral adaptation, updating node embeddings in real time as user preferences
or graph structures evolve critical for dynamic domains like social networks or
real-time recommendation systems.

The success of company outreach, particularly initial ’leading’ emails, heav-
ily relies on generating positive first impressions, which research indicates are
significantly influenced by homophily—the principle of attraction to similar oth-
ers.[35][16] The ’lay theory of homophily,’ for example, demonstrates that in-
dividuals rapidly form more favorable impressions when they perceive a shared
connection or relevant similarity with a stranger. This phenomenon directly im-



pacts the potential for positive engagement with outreach emails. The colleague
has a mean of 1.24 and a standard deviation of 0.91, compared to the control
group, which has a mean of 1.60 and a standard deviation of 1.22. Lower scores
shows a stronger lay homophily effect. Further underscoring the power of lever-
aging deep network understanding for enhancing connection quality, results from
online A/B tests of GNN-based approaches like LinkSAGE demonstrate substan-
tial improvements in matching individuals to relevant opportunities, particularly
for members lacking extensive prior predictive data. For instance, the application
of such a model led to a notable increase in ’Qualified Applications’ by up to
+3.2% (for Opportunistic members) and a significant reduction in the ’Dismiss
To Apply Ratio’ by as much as -25.3% (for Urgent members). These metrics
strongly suggest that models capable of discerning underlying network patterns
and potential affinities—which can include signals indicative of homophily—are
more effective in fostering successful engagement and reducing mismatches. This
principle is highly relevant for optimizing the impact and response rates of com-
pany outreach emails by ensuring they reach more receptive and well-matched
individuals.[16]

Our proposed PSNA model demonstrates resilience with a smaller dataset
of around 4,000 samples, attributed to network heterogeneity. In contrast, many
GNN models typically require 50,000 to 100,000 labeled edges for optimal per-
formance.[9] Considering our current limited data, we expect the model’s per-
formance to improve as the dataset size grows. Given the heterogeneous nature
of our network, an optimal dataset size would range from 200,000 to 400,000
data points, and we predict a substantial performance increase upon reaching
100,000 to 200,000 labeled edges.[28]

Our system, which models hierarchical edges and utilizes an attention mech-
anism for granular scoring, achieves 2.5 times higher accuracy in link prediction
and node classification tasks compared to standard GNNs, while maintaining
scalability for large-scale graphs.

(a) illustrating lay theory
of homophily effects

(b) the relative impact
of an A/B test on var-
ious application metrics
for members with limited
predictive data.

(c) the corresponding out-
reach response rate(%) vs
the number of shared at-
tributes highlighted VS ,

Fig. 1: Experimental Results on Homophily, A/B Testing, and Outreach Re-
sponse.



2.1 Background

Graph data is a very powerful representation of the relationship between entities
through a structure composed of nodes(entities) and edges(relationships).[33]
Each entity is considered a node, and an interaction or relationship is consid-
ered an edge[22]. For instance, in a social network, each user is a node, and a
friendship or connection (of a particular “reason”) between users is represented
as an edge linking their respective nodes.

Graph data models relationships between entities (nodes) via connections
(edges). Analyzing these networks reveals system interconnections. Techniques
include finding influential nodes (centrality), identifying groups (clusters), dis-
covering connections between groups (bridges), predicting future connections
(link prediction), examining individual connections (ego network analysis), and
finding similar entities (similarity detection).[5][20][19][13][18][23] These meth-
ods uncover complex patterns in diverse domains like social, transportation,
biological, and knowledge networks.

(a) each node represents
person and edge repre-
sents connectivity of each
person. B is the highest
centrality node

(b) three clusters repre-
sent this graph network
and H-E and D-A are
bridge node

(c) link prediction: The
dot line shows high likeli-
hood link connection

Fig. 2: figure 1. Example of Graph Network

Graph Neural Networks (GNNs) represent an innovative approach to analyz-
ing relational data by effectively combining the power of deep learning method-
ologies with the structural information inherent in graph representations. Unlike
traditional neural network architectures that are primarily designed to process
data arranged in grid-like or sequential formats, GNNs operate directly on the
fundamental elements of a graph, namely nodes and edges. This unique capa-
bility enables them to effectively model complex systems where interactions and
relationships between entities are paramount. GNNs extend the principles of
classical network analysis by introducing the crucial ability to automatically
learn hierarchical and abstract representations directly from the graph data it-
self, opening up new possibilities for understanding and predicting behavior in



interconnected systems.[4][8][1][26]

2.2 Challenges with Existing Graph Neural Networks

GNN is a specialized artificial neural network for graph structure datasets rather
than standard inputs, such as images, text, numbers, or voice. The input matrix
represents the nodes and edges. GNN specializes in pattern recognition of rela-
tionships and interactions of a given system. GNN learns the properties of nodes
by summing the information of neighboring nodes and transforming it through
neural network layers. Graph Neural Networks (GNNs) acquire node properties
by aggregating information from neighboring nodes and transforming it through
neural network layers.

The nature of learning GNN methods introduces challenges

– Over-Smoothing: A deeper network makes it very hard to distinguish be-
tween nodes due to the aggregation of neighboring nodes[15]

– Heterophily: Traditional GNNs assume connected nodes are similar, but this
usually doesn’t hold true in real-world problems. Traditional Graph Neural
Networks (GNNs) operate under the assumption that connected nodes ex-
hibit similarity. However, this assumption of homophily often fails in prac-
tical, real-world scenarios, where connected nodes can be dissimilar (het-
erophily).[34]

– Static vs Dynamic Graphs: Most GNNs don’t consider updating or grow-
ing graph networks, but real-world relationships, especially social networks,
are dynamically changing over time. Most existing Graph Neural Networks
(GNNs) treat network structures as static. However, real-world relationships,
such as those found in social networks, are dynamic and evolve over time,
necessitating models that account for these changes and growth.[30]

3 Introducing People Search Network Algorithm(PSNA)

The People Search Network Algorithm(PSNA) builds on Relevance-aware GNN(RA-
GNN) and it is added on Message Passing Neural Network(MPNN) paradigm,
which formalizes the propagation of information across graph edges through iter-
ative message aggregation and node feature updates. However, PSNA introduces
two critical innovations:

– Contextual Connection Points: Unlike standard MPNNs, which treat edges
as uniform conduits for feature exchange, PSNA explicitly models edge se-
mantics (e.g., ”collaboration,” ”competition,” ”topic overlap”) as ”connec-
tion points.” These contextual labels allow the model to differentiate between



relationship types during message passing, ensuring that node updates de-
pend on the reason for connectivity rather than mere adjacency. For exam-
ple, in a social network of professionals, a “co-authorship” edge might carry
higher contextual weight than a generic “follow” edge when predicting future
collaborations.

– Attention-Driven Message Weighting: PSNA integrates an attention mecha-
nism to dynamically assign importance weights to incoming messages based
on their connection points and node features. This extends MPNN’s ba-
sic aggregation strategy (e.g., mean/max pooling) by prioritizing contextu-
ally relevant interactions. For example, in a heterogeneous academic graph,
PSNA might prioritize “shared project” edges over “common university”
edges when predicting a researcher’s future collaborations, leveraging atten-
tion scores to focus on high-impact relationships.

Furthermore, MPNN’s layered architecture provides the backbone for PSNA’s
adaptive learning:

– Message Passing Phase: Nodes propagate features to neighbors via edge-
specific functions. PSNA enriches this step by encoding connection point
metadata (e.g., edge type, temporal context) into the message computation,
ensuring semantic alignment during propagation.

– Aggregation and Update Phase: PSNA aggregates weighted messages using
attention scores, then updates node embeddings with a Transformer-style
mechanism to preserve historical state. This allows the model to retain long-
term dependencies in dynamic graphs (e.g., evolving social networks)

– Residual Learning: Inspired by RA-HGNN, PSNA employs residual connec-
tions to stabilize training in deep networks, mitigating over-smoothing by
preserving node-specific features across layers.[32]

The presented model introduces a significant advancement in graph neural
networks (GNNs) by incorporating the dynamic nature of user temporal choices.
Unlike conventional GNN models that operate under the assumption of a static
graph structure, this innovative approach enables real-time updates to each node,
representing individual users and their evolving temporal preferences. This con-
tinuous adaptation directly influences the model’s predictions, allowing for dy-
namic and responsive outputs. By acknowledging and integrating the fluidity of
user behavior over time, the model surpasses the limitations imposed by static
graph networks, leading to a more nuanced and accurate understanding of user
interactions and preferences. This real-time adaptability positions the model as
a powerful tool in dynamic environments where user behavior is subject to fre-
quent changes. While this innovative approach addresses the dynamic aspects of



graph network, like all sophisticated deep learning systems, its ultimate efficacy
is also deeply intertwined with the foundational elements of data.

4 Applications

Looking beyond our RA-GNN-powered PSNA (People Search Network Algo-
rithm) technical architecture, we can begin to examine potential use cases for an
algorithm capable of deep relational understanding. The presence of a universal
capability to identify nuanced connection points and a programmable framework
for personalized matching could mark the start of a new era in human interac-
tion and opportunity discovery. This section explores some of the most promising
applications. There are certainly many more equally exciting applications that
are omitted.

4.1 A Universal Engine for Human Connection

Since the internet and social media technologies revolutionized communication
and networking in prior decades, little fundamental advancement has been made
to truly adapt AI for nuanced human understanding beyond superficial match-
ing.[14] Hyper-personalized, authentic connections are the killer application of
advanced relational AI, and our purpose-built PSNA will create entirely new
paradigms for interaction starting with deep relational insight.

Traditional matching systems rely on simplistic filtering mechanisms and
opaque algorithms, creating inefficiencies in the identification, assessment, and
realization of valuable human connections across numerous professional and so-
cial domains.[21] The high opportunity costs of this inefficient market prevent
genuine talent and shared affinities from generating optimal value and limit the
authentic exchange of potential and synergy. Our PSNA service removes these
barriers by enabling deeply personalized matching via programmatic understand-
ing of nuanced connection points through statistical probabilistic prediction.

Our system can onramp existing résumé databases from organizations or in-
dividual user profiles from various platforms onto our system as rich, relational
graphs (Profile RWAs - Real World Attributes). More exciting, natively under-
stood ‘deep connection points’ can compose with diverse application ecosystems
in an emerging field of Connection Intelligence, where these nuanced insights
can be strategically segmented, used as foundational data for hyper-personalized
communication, or otherwise leveraged in socially and economically productive
ways.

Human-to-human interactions, enhanced by AI-driven insights, are simply
the most basic exchange in the new connection economy. System-to-human inter-
actions are made possible via our PSNA’s deep analytical capabilities, wherein



our platform can autonomously identify highly relevant connection points for
users and upgrade their ability to network, recruit, or find companionship via
personalized recommendations.[3] If value is generated (e.g., a successful hire,
a closed deal, a meaningful relationship, a closed feedback loop to constantly
improve itself ), the system demonstrates its capacity to empower individu-
als through authentic connection rather than creating opaque barriers. Purely
system-to-system (or AI agent-to-AI agent) connection brokering is also viable,
allowing an entire marketplace of automated, highly relevant interactions to
flourish with our PSNA as the core intelligence layer for relational matching. We
will cover this possibility in more detail in the following section.

4.2 A Foundational Layer for Hyper-Peronalized AI interactions

Advanced AI systems, particularly Large Language Models and generative agents,
are the perfect substrate for leveraging deep relational understanding, as they
offer a programmable medium through which software can engage in nuanced,
context-aware communication and decision-making.[12] Because effective human-
centric AI relies upon understanding nuanced individual profiles as its native
inputs and facilitating meaningful connections or insights as its native outputs,
our PSNA offers a foundational analytical layer for AI-driven interactions, both
for enhancing AI’s comprehension of human attributes and for optimizing the
outcomes of personalized matching and engagement.

4.3 Chain of Understanding

In the human-centric AI field, relational understanding assets encompass vari-
ous forms of profile intelligence — from raw unstructured data (e.g., résumés,
user-generated text) and parsed structured entities to inferred relational graphs
and nuanced connection point summaries.

Figure 3 illustrates how these understanding assets form a ”chain of un-
derstanding.” A comprehensive individual profile graph (Profile Graph Gi) can
originate from an initial set of entities parsed (structured data Dj) that was
enhanced through our programmable PSNA deep relational inference using con-
textual knowledge (contextual data Ck ).[24] The initial parsed entity set itself
could be derived from one or more raw data sources. These raw data sources may
also be combinations of different document types or user inputs. Furthermore,
there has been active exploration recently in developing distilled ”Connection
Packages”—actionable summaries of key relational insights tailored for specific
matching scenarios. A Connection Package contains all the necessary inferred
relational data for efficient, context-aware matching, which reduces cognitive
load on end-users while maintaining high relevance close to full profile analy-
sis.[27] Since full dynamic profile re-analysis for every query requires significant
computational resources and latency, these packages offer an efficient alterna-
tive. State-of-the-art graph embedding and relational inference techniques, core
to PSNA, can be used to capture the unique relational topology and essential



Fig. 3: Chain of Understanding for Profile Intelligence

attributes of an individual’s profile when constructing their dynamic graph rep-
resentation within our system.

Constructing the entire ‘chain of understanding’ within our PSNA system
enables a genealogy of relational value that highlights key connection efficacies
across the entire profile graph when a successful match or insightful recommenda-
tion is generated at any single interaction point. Our PSNA forms the basis for
generating high-fidelity, deeply contextualized profiles and connection insights
that lead to more performant and meaningful human interactions. This value
proposition encourages users to provide comprehensive (yet privacy-protected)
information by showing demonstrably more relevant and valuable outcomes,
which creates a flywheel for rapid improvement in matching quality and user
satisfaction. With transparent (yet ethically governed) data processing and auto-
mated insight generation, our platform becomes the facilitation, interpretation,
and action layer for a synergistic ecosystem where individuals, organizations,
and automated systems work together seamlessly — all while fostering genuine
understanding and opportunity realization.[17]

4.4 Connection Brokering

AI is evolving from standalone matching algorithms to networks of intelligent
systems that can sense nuanced human attributes, decide on optimal connection



Fig. 4: CRelational Interaction Protocol (RIP) - interaction Flow

strategies, and act to achieve specific relational or professional goals. This repre-
sents a shift from viewing AI as just a filtering tool to seeing it as an ecosystem
where AI-augmented platforms and future autonomous agents collaborate and
generate value through their facilitated interactions.

Developed within our research, the Relational Interaction Protocol (RIP)
represents an important framework in the evolution of AI-driven connection
ecosystems.[7] RIP is designed to facilitate standardized, context-aware interac-
tions between AI systems or users leveraging AI-driven insights. This system-to-
system or system-to-human protocol establishes the foundational infrastructure
for the seamless identification and utilization by AI of deep relational insights,
such as inferred compatible skill sets, shared niche interests, or aligned profes-
sional objectives, often without the need for extensive manual human oversight
in the discovery phase.

RIP, powered by PSNA, enables systems to a utonomously identify optimal
matches, suggest personalized engagement strategies, and facilitate valuable in-
troductions based on deep profile understanding.[24] RIP lays the groundwork
for a future where AI systems act as sophisticated relational catalysts, improv-
ing connection efficacy by accessing nuanced understanding from PSNA and
enabling users or other systems to achieve their goals more effectively. As more
profiles are deeply understood by the PSNA and integrated into this framework,



the value and capabilities of the entire connection ecosystem grow exponentially.
Each newly analyzed profile and its inferred connection points bring unique rela-
tional vectors that can be combined with existing ones to create novel matching
opportunities and personalized services. For example, specialized AI-driven mod-
ules could work together to facilitate a complex career transition for a user: a
”skill assessment agent” identifies transferable skills and gaps by analyzing the
user’s profile with the RA-GNN, an ”opportunity scouting agent” finds suitable
roles or projects based on these deep insights, and a ”networking agent” sug-
gests key individuals to connect with, all orchestrated through RIP based on the
RA-GNN’s relational intelligence.
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